王永欣,博士,副教授,山东建筑大学硕士生导师,兼任英国奥斯特大学(Ulster University)博士生合作导师。2021年获山东大学计算机科学博士学位,主要研究方向为多媒体分析、信息检索、机器学习、计算机视觉等。在IEEE TCYB、IEEE TKDE、IEEE TIP、PR、MM、WWW、IJCAI等领域顶级刊物发表论文10余篇。担任IEEE TMM、IEEE TKDE、IEEE TCSVT、CIKM等期刊和会议的审稿人。
个人主页:https://yxinwang.github.io/
电子邮箱:wangyongxin21@sdjzu.edu.cn
主要主持及参与项目:
[1] 山东建筑大学科研启动基金,主持
[2] 面向大规模细粒度数据的快速检索相关问题研究,国家自然科学基金面上项目,参与
[3] 面向检索的大规模多模态数据表示方法研究,国家自然科学基金面上项目,参与
[4] 面向大规模图像与视频的内容分析与检索关键技术研究与应用,山东省重点研发计划,参与
[5] 面向城市管理的人工智能视频分析关键技术与决策模型研究,山东省自然科学基金重大基础研究计划,参与
主要获得奖项:
[1] ACM济南优秀博士论文奖,2021
[2] 山东大学软件学院学术之星,2021
[3] 山东省优秀毕业生,2017
[4] 山东省计算机学会年度优秀学术论文,2014
代表性论文:
[1] Yongxin Wang, Zhen-Duo Chen, Xin Luo, Rui Li, and Xin-Shun Xu, “Fast cross-modal hashing with global and local similarity embedding,” IEEE Trans. on Cybernetics, 2021.(中科院一区,CCF-B期刊)
[2] Yongxin Wang, Xin Luo, Liqiang Nie, Jingkuan Song, Wei Zhang, and Xin-Shun Xu, “BATCH: A scalable asymmetric discrete cross-modal hashing,” IEEE Trans. on Knowledge and Data Engineering, vol. 33, no. 11, pp. 3507-3519, 2021.(CCF-A期刊,ICR一区)
[3] Yongxin Wang, Zhen-Duo Chen, Xin Luo, and Xin-Shun Xu, “High-dimensional sparse cross-modal hashing with fine-grained similarity embedding,” in Proc. Web Conf. (WWW), 2021, pp. 2900-2909.(CCF-A会议)
[4] Yongxin Wang, Xin Luo, and Xin-Shun Xu, “Label embedding online hashing for cross-modal retrieval,” in Proc. ACM Multimedia Conf. (MM), 2020, pp. 871-879.(CCF-A会议)
[5] 王永欣, 田洁茹, 陈振铎, 罗昕, 许信顺, “基于标记增强的离散跨模态哈希方法,” 软件学报, 2022, 录用.(CCF-A&T1中文期刊)
[6] 李慧琼, 王永欣, 陈振铎, 罗昕, 许信顺, “基于排序的监督离散跨模态哈希,” 计算机学报, vol. 44, no. 8, pp. 1620-1635, 2021.(CCF-A&T1中文期刊)
[7] Yu-Wei Zhan, Yongxin Wang, Yu Sun, Xiao-Ming Wu, Xin Luo and Xin-Shun Xu, “Discrete online cross-modal hashing,” Pattern Recognition, vol. 122, pp. 108262, 2021.(CCF-B期刊,JCR一区)
[8] Zhen-Duo Chen, Xin Luo, Yongxin Wang, Shanqing Guo, and Xin-Shun Xu, “Fine-grained hashing with double filtering,” IEEE Trans. on Image Processing, vol. 31, pp. 1671-1683, 2022.(CCF-A期刊,中科院一区)
[9] Yu-Wei Zhan, Xin Luo, Yu Sun, Yongxin Wang, Zhen-Duo Chen, and Xin-Shun Xu, “Weakly-supervised online hashing,” in Proc. Int. Conf. Multimedia and Expo. (ICME), 2021, pp. 1-6.(CCF-B会议)
[10] Yu-Wei Zhan, Xin Luo, Yongxin Wang, and Xin-Shun Xu, “Supervised hierarchical deep hashing for cross-modal retrieval,” in Proc. ACM Multimedia Conf. (MM), 2020, pp. 3386-3394.(CCF-A会议)
[11] Zhen-Duo Chen, Yongxin Wang, Hui-Qiong Li, Xin Luo, Liqiang Nie, and Xin-Shun Xu, “A two-step cross-modal hashing by exploiting label correlations and preserving similarity in both steps,” in Proc. ACM Multimedia Conf. (MM), 2019, pp. 1694–1702.(CCF-A会议)
[12] Yongxin Wang, Xin Luo, Huaxiang Zhang, and Xin-Shun Xu, “Sparse manifold embedded hashing for multimedia retrieval,” in Proc. Int. Conf. Data Eng. Workshops (ICDEW), 2019, pp. 312–318.
[13] Xin Luo, Xiao-Ya Yin, Liqiang Nie, Xuemeng Song, Yongxin Wang, and Xin-Shun Xu, “SDMCH: Supervised discrete manifold-embedded cross-modal hashing,” in Proc. Int. Joint Conf. Artif. Intell. (IJCAI), 2018, pp. 2518–2524.(CCF-A会议)
[14] Yongxin Wang, Huaxiang Zhang, and Feng Yang, “A weighted sparse neighbourhood-preserving projections for face recognition,” IETE Journal of Research, vol. 63, no. 3, pp. 358-367, 2017.(SCI,JCR三区)